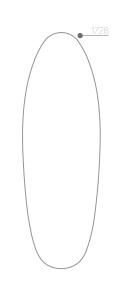

Tavolara


Scheda tecnica

Materiale	Acciaio al carbonio				
Radiatore - mm	1728x535x7				
Connessioni	5x1/2 (attacchi per la valvola di sfiato, inclusi)				
Fissaggi a muro	4				
Pressione max d'esercizio	8 bar				
Temperatura max d'esercizio	90 °C				
Verniciatura	a polveri epossipoliestere				
Imballo	scatola in cartone + protezioni interne in cartone				
	e polistirolo + foglio di polietilene espanso				

Dotazione di serie: 1 kit di fissaggi a muro - 1 valvola di sfiato - 2 tappi ciechi - 3 coperture cromate per tappi ciechi e valvola di sfiato.

Tabacco VOV08

cod.	altezza (mm)	larghezza (mm)		peso (kg)	contenuto d'acqua (lt)	∆⊺50 °C watt	ΔΤ 30 °C watt	ΔT 42,5 °C watt	∆T60 °C watt	Esponente n
384972	1728	535	50	23,3	1,3	713	376	582	896	1,25085

Bianco VOV09

cod.	altezza (mm)	larghezza (mm)	interasse (mm)	peso (kg)	contenuto d'acqua (lt)	∆⊺50 °C watt	ΔΤ 30 °C watt	ΔT 42,5 °C watt	∆⊺60 °C watt	Esponente n
384682	1728	535	50	23,3	1,3	713	376	582	896	1,25085

Antracite VOV12

cod.	altezza (mm)	larghezza (mm)	interasse (mm)	peso (kg)	contenuto d'acqua (lt)	∆⊺50 °C watt	∆T30 °C watt	∆T 42,5 °C watt	∆T60 °C watt	Esponente n
384681	1728	535	50	23,3	1,3	713	376	582	896	1,25085

Tavolara

Ametista VOV13

cod.	altezza (mm)	larghezza (mm)		peso (kg)	contenuto d'acqua (lt)	∆⊺50 °C watt	∆T 30 °C watt	∆T 42,5 °C watt	∆T60 °C watt	Esponente n
384869	1728	535	50	23,3	1,3	713	376	582	896	1,25085

Quarzo VOV15

cod.	altezza (mm)	larghezza (mm)	interasse (mm)	peso (kg)	contenuto d'acqua (lt)	∆T 50 °C watt	∆T30 °C watt	∆T 42,5 °C watt	∆T60 °C watt	Esponente n
384774	1728	535	50	23,3	1,3	713	376	582	896	1,25085

Azzurrite VOV16

cod.	altezza (mm)	larghezza (mm)	interasse (mm)	peso (kg)	contenuto d'acqua (lt)	∆⊺50 °C watt	∆T 30 °C watt	∆T 42,5 °C watt	∆T60 °C watt	Esponente n
384973	1728	535	50	23,3	1,3	713	376	582	896	1,25085

I radiatori vengono testati presso laboratori accreditati secondo la norma EN-442 che determina la resa nominale fissando un ΔT a 50 °C. Il ΔT è la differenza tra la temperatura media dell'acqua all'interno del radiatore e la temperatura dell'ambiente e viene calcolato con la seguente formula: (((T_1+T_2)/2)- T_3). es: ((75+65/2)-20)= 50 °C. Per ottenere il valore della resa termica con un ΔT diverso, può essere utilizzata la seguente formula: $\phi_x = \phi_{\Delta T 50}^{*} (\Delta T_x/50)^n$.

Di seguito un esempio per calcolare la resa con ΔT 60 °C del codice 384972: 713*(60/50)125085= 896.

Per ottenere il valore in kcal/h, moltiplicare la resa in watt per 0,85984. Per ottenere il valore in btu, moltiplicare la resa in watt per 3,412.

LEGENDA

 T_1 = temperatura di mandata - T_2 = temperatura di ritorno - T_3 = temperatura ambiente.

 ϕ_x^- = resa da calcolare - $\phi_{\Delta\tau 50}$ = resa a $\Delta\tau$ 50 °C (tabella) - $\Delta\tau_x^-$ = valore di $\Delta\tau$ da calcolare - "= esponente "n" (tabella).

